III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

MACHINE LEARNING (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max.				
			DL		Marks				
		UNIT-I							
1	Bri	efly discuss about checkers problem using	L2	CO1	14 M				
	lear	rning system.							
	OR								
2	a)	Give three computer applications for which	L2	CO1	7 M				
		machine learning approaches seem							
		appropriate and three for which they seem							
		inappropriate.							
	b)	Explain about Decision Tree learning	L2	CO2	7 M				
		algorithm.							
		UNIT-II							
3	a)	What is perceptron? Explain with necessary	L2	CO1	7 M				
		diagram.							
	b)	Discuss about perceptron training rule.	L2	CO2	7 M				

6 E	diagra a) E ex b) W "V	hm with m. xplain samp ample.	Bias in the estimation	UNIT and tru the ate"? OI	neural F-III ue erro estima R	ate" and	n L2 1 L2	CO2 CO2 CO2	14 M 7 M 7 M
5 a 6 H	diagra a) E ex b) W "V	m. xplain samp ample. hat is "E Variance in t	le error a Bias in the estima	UNIT and tru the ate"? OI	F-III ue erro estima R	or with an ate" and	n L2 1 L2	CO2	7 M
5 a 1 6 E	a) E ez b) W "V	xplain samp ample. hat is "E Variance in t	Bias in the estimation	and tru the ate"? OI	ue erro estima R	ate" and	1 L2	CO2	7 M
6 E	ex b) W "V	ample. hat is "E variance in t	Bias in the estimation	and tru the ate"? OI	ue erro estima R	ate" and	1 L2	CO2	7 M
6 E	ex b) W "V	ample. hat is "E variance in t	Bias in the estimation	and tru the ate"? OI	ue erro estima R	ate" and	1 L2	CO2	7 M
6 E	ex b) W "V	ample. hat is "E variance in t	Bias in the estimation	the ate"? OI	estima R	ate" and	1 L2	CO2	7 M
6 H	b) W "V	hat is "E Variance in t	he estima	ate"? OI	R				
6 H	"\	Variance in t	he estima	ate"? OI	R				
				OI					
	Expla	n about Bag	gging wit					· · · · · ·	
	Expla	n about Bag	gging wit	h an e	xample				· · · -
7					Aumpro	Э.	L2	CO2	14 M
7				UNIT	Γ -ΙV				
7 8	a) W	hat is the re	ole of the	e kern	nel funo	ction in a	a L3	CO4	7 M
	support vector machine, and how does i						t		
	impact the SVM's ability to separate classes								
	in	a non-linea							
1	b) What is the underlying principle behind the						e L3	CO2	7 M
	k-nearest neighbor algorithm, and how does						8		
	it make predictions based on the distances						8		
	be	tween data	points in	a give	en data	set?			
<u>.</u>				OI	R			1	
8 V	What is Weighted Nearest Neighbor algorithm					n L3	CO4	14 M	
a	and how does it use weights to improve the					e			
a	accuracy of predictions in classification					1			
p	problems? Explain with an example.								

		UNIT-V						
9	Cor	nsider the following two-dimensional data	L4	CO4	14 M			
	poi	nts as given below.						
	D =	$= \{(2, 10), (2, 5), (8, 4), (5, 8), (7, 5), (6, 4), \}$						
	(1,	2), (4, 9)}. Cluster the data points using K						
	mea	ans clustering algorithm. Consider K=3 and						
	thre	e initial cluster centers as (2,10) and (5, 8),						
	and							
	dist	ance between the samples. Demonstrate all						
	step	os with proper calculations for at least two						
	iter	ations.						
OR								
10	a)	Discuss any two unsupervised machine	L2	CO3	7 M			
		learning techniques.						
	b)	Discuss about the Intrinsic methods used for	L2	CO3	7 M			
		measuring the clustering quality.						